HF OPERATORS

SMALL HF ANTENNAS

Rev 1
by
John White
VA7JW
Antenna Problems

- Big or Small – always problems
- Affects all - Single family, apartments, condo’s, high rises, etc ...
- The Small Space and Big Antenna Dilemma
- Today’s Urban Constraints
 - Covenants and Gated Communities
 - Restricted lot size
 - City Bylaws
 - Boards of Variance
 - Strata Rules
 - Neighbor complaints of unsightly “structures”
What to Do?

1. Get Permission – refer to Industry Canada CPC-2-0-03

2. Make antennas smaller

3. Hide antennas – attics, trees, around wooden fences, thin black wires …

4. Disguise antennas – flag poles, gutters, …

5. Move

Focus on the #2 solution – Small Antennas
Small Antenna Characteristics

- Small antenna usually means SHORTER with respect to the Resonant Half Wave dipole
- Overall, antennas are characterized by
 - Bandwidth (usually VSWR < 3:1)
 - Feed point impedance (half wave dipole typically 50 ohms)
 - Gain (as much as possible over a dipole)
- Unfortunately, as the antenna becomes shorter, we get….
 - Narrower Bandwidth
 - Lower Feed Point Impedance
 - Lower Gain
- The up side is - SMALL is better than no antenna
Antenna Basics

- All antennas behave as tuned circuits that possess resistance R, inductance L and capacitance C
- At resonance, L and C reactance cancel leaving only the resistive component
- At frequencies BELOW resonance, capacitive reactance appears, antenna being too short
- At frequencies ABOVE resonance, inductive reactance appears, antenna being too long
Feed Point Impedance - FPZ

- • - - • - •

- FPZ for a resonant half wave dipole antenna is ~ 50 ohms resistive
- Physical resistors absorb & fully dissipate energy as heat
- The 50 ohms is a hypothetical resistor that does the same thing as a physical resistor except that it dissipates the TX energy as RADIATION rather than heat
- This is the RADIATION RESISTANCE (RR)
- All antennas have real resistive loses
 - Ohmic = wire resistances typically very low
 - R wire very small compared to R radiation
FPZ with Short Antenna

- Short antennas look capacitive
 - “C” does not contribute to radiation
 - complicates FPZ

- Radiation Resistance decreases
 - complicates FPZ as well

- Ant FPZ is no longer 50 ohm resistive
 - VSWR is no longer 1:1

- To restore FPZ, coils are added to null the capacitance
 - Coil adds ohmic losses,
 - deprives RR of energy, lowering radiation efficiency i.e. gain
 - does not raise decreased value of RR
Example – Short Antenna

- 8 foot whip antenna (approx 1/8 wave on 20 m)
- Operating at 14.2 MHz
 - radiation resistance ~ 10 ohms
 - base coil required to resonate antenna ~ 3 uH
 - base coil typical R ~ 2 ohms
 - efficiency ~ 83% or ~ -0.8 dB (dipole / negligible S points)
- Operating at 3.7 MHz
 - radiation resistance ~ 0.3 ohm
 - base coil required to resonate antenna ~ 77 uH
 - base coil typical R ~ 20 ohms
 - efficiency ~ 1.5 % or ~ -18 dB (dipole / 3 S points)

ARRL Antenna Book. 21 edition. Chap 16, pg 16-5. Table 1
Operating Issues

- - - - - - - - - - - - - - - - - - - -

- Shortened HF Antennas
 - FPZ matching issues
 - but - manufacturers typically provide built-in matching systems
 - possible need for antenna tuners (rig tuners may be inadequate)

- With High Density housing Interference more likely
 - proximity to audio, video, AM, FM, PC, Tel, etc. equipment
 - QRP to 100 watts probable max

- Safety issue
 - you and the antenna may share the same space
 - RF exposure limits need to be checked
Building RF Transparency

- Wooden frame structure
 - RF transparency – good
 - Embedded stucco wall mesh alter radiation patterns
 - Internal conductors acting as antennas
 - Power, telephone, cable, alarm etc wiring
 - Copper plumbing

- Concrete structure Issues
 - Rebar and metal framed windows, attenuation of signal
 - Metal 2 x 4 framing inside building
 - Internal conductors can transport RF to undesirable places within structure
High Density - Which Floor?

- Top floor - could be best case
 - higher is better for propagation
 - access to roof top antennas
 - short feeder runs
 - best separation from tenants, all below

- Bottom – next best location
 - access to ground mounted antennas
 - grounding systems possible
 - feeder runs OK
 - tenant spacing, top & 2 sides

- Mid floors – tough location
 - interior or balcony mounted antennas
 - tenants all around
Antenna Tuners

- A tuner does NOT tune the antenna
- Tuner transforms the complex impedance seen at the input of the coax feeder, to 50 ohms resistive, to meet transmitter requirement
 - facilitates maximum power transfer to antenna
- Most modern rigs have built-in antenna tuners
 - typically will match < 3:1 down to 1:1 at rig interface
- Tuning limitations may be evident if tuner cannot match the antenna / feed line impedance
- Rig tuners not well suited to off–resonant antennas
Loading Coils

- Loading Coils commonly used in small antennas
 - electrically lengthens the antenna shortness
 - Typically part of purchased antennas

- Cancels the Capacitive component
 - resonates the antenna
 - acts as Z matching network
 - 50 ohms

- Coil placement
 - Dipoles – one in each leg
 - Verticals – typically at bottom to half way up radiator
Current Baluns

- In-line coaxial current baluns keep RF from flowing on coax back into the shack

- Isolates rig / antenna from shack ground
 - MFJ-915
 - Radio Works T 4G

- Snap On chokes
 - RF Parts or DX Engineering
 - http://www.dxengineering.com/

- Ferrite Beads
 - Palomar Engineering model BA-8
 - http://www.palomar-engineers.com/
Traps – Multi-Band

- “Traps” are parallel L-C resonant devices inserted in radiating elements
- Trap is Hi–Z at a band higher in frequency than basic length
- Enables dual or multi band operation depending on how many traps are inserted
- Traps will also shorten antenna length
- Applicable to dipole’s, yagi’s, verticals
Products

- Many manufacturers offer shortened HF, multi-band antennas
 - resonant on specified bands, i.e. 20-15-10m etc.
 - 50 ohm feed point impedances to match 50 ohm coax

- Various configurations = dipoles, yagi’s, verticals, loops

- Typically all will have some form of FPZ matching system
 - chokes, baluns, impedance transformers
 - there are losses associated with all devices

- Offerings >
Dipole Antennas

- Shortened, loaded balanced multi-band dipoles
 - No ground issues
 - Multi band

- Alpha Delta http://www.alphadeltacom.com/
 - DX-EE 40 ft / 40 thru 10
 - Radio tuner probably OK

- B & W http://www.bwantennas.com/
 - BWD series 20 ft / 20 thru 10M
 - Radio tuner probably OK

- Radio Works http://radioworks.com/
 - G5RV Plus all band
 - External tuner needed
Long Wire Antennas

- Random length of wire – long as possible – you build
 - string outdoors, #20 insulated black low visibility
 - need to support two ends

- Typically non-resonant

- Multi-band capability

- End feed is probably a high Z point

- Must have a tuner other than rig (LDG, MFJ, Icom. SGC)

- Must have a “ground” or counterpoise connection
Coil Loaded Dipole

- Single band
- Reduced lengths
 - 80M dipole from 132 ft to 69 ft
 - 40M dipole from 66 ft to 38 ft
 - most likely an outdoor application
- Radio tuner probably OK

Loading Coils (2) – “Shortner”

Balun

http://www.spiromfg.com/
Wire Loop Antenna

- Home made - construct wire loop
- Could reside inside dwelling - attic
- Hang horizontal or vertical on a wall
- Requires external tuner & balun
 - LDG Z-100 tuner + RBA balun
 - http://www.ldgelectronics.com/
- No ground required
- Random length loop – big as possible
Compact Dipoles

- Buddipole
 - 40 to 2 M
 - coil loaded
 - Collapsible, portable
 - 16 feet extended

- MFJ BigEAR
 - 40 thru 6 m
 - Model MFJ-2289
MFJ Loop Antenna

- Small
- 36 inch diameter
- MFJ-1786 20 thru 10 M
- MFJ-1788 40 thru 15 M
- Low noise advantage
- Inside or outside dwelling

- Includes a custom remote auto tuner- needed as loop BW is very narrow has to be retuned to follow rig frequency
Compact Yagi's

- Hybrid Quad
 - Model MQ-1
 - 20 thru 6M
 - 11 ft elements / <5 ft boom
 - http://www.tgmcom.com/

- G4MH Mini Beam
 - 10/15/20M 3 element
 - 2M boom / 5M elements

- ZX Mini-2000 Beam
 - 10/15/20M 3 element
 - 3M boom / 3.4M elements

- Both at http://www.zx-yagi.com/mini.htm
Vertical Antennas

- Vertical antennas are traditionally ¼ wave long
- Must operate against a ground plane or counterpoise
- Counterpoises are non resonant, single wire
- Verticals commonly shortened for fixed or mobile use
 - Base loading – matching coils required
 - Traps commonly used for fixed applications
- Copper plumbing and Safety ground wiring NOT a good choice for RF ground / counterpoise.
- Mounting possible off balconies, rooftops or at ground level
Ground Plane System

- A system of wires at base of vertical
 - minimum 2 per band if using multi band vertical
 - single band, 4 quarter wave are sufficient
- Lay radials out symmetrically as possible
- Bend ends to fit, no bends at base
- Lay radials on surfaces
 - roof, hold in place with bricks
 - lawns - trench and bury (staples avail from DX engineering)
Counterpoise

- Verticals must have another “side” to its feed point
 - Coax braid cannot be left un-terminated

- A single non resonant conductor of non-specified length connected to braid is known as a counterpoise

- Counterpoise will have RF on it and will radiate

- Undefined operation if using building copper pipe or safety ground wiring as counterpoise

- MFJ-931 Artificial Ground “tuner”
 - Helps match a short counterpoise
Vertical Capacity “Hats”

- Capacity “Hat” placed at top end of antenna
- Shortening the antenna gives rise to capacitance at feed point
- Introducing capacitance at the top effectively restores the length causing feed point to look resistive again
- Can be placed in middle but most effective at top
Example Capacity “Hats”

- Capacity Hat
 - 40 thru 2 M
 - No Radials
 - Feed line balun
 - 12 feet high
 - 24” footprint
 - 80/40M
 - Needs, guys & radials
 - 33 feet high

[MFJ-1796](http://www.mfjenterprises.com/)

[MFJ-1798](http://www.mfjenterprises.com/)
Some Vertical Antennas

- Trap
 - Good for ground mount or flat roof
 - to 30 ft high
 - Requires ground system
 - Multi-band - can be 80 thru 10, 20 thru 10 etc
 - MFJ - big selection – search verticals
 - Hygain - big selection – search verticals

- Screwdriver style
 - Motorized & tuneable
 - multi-band, fully resonant 80 – 10M
 - Extends to ~ 9 ft, some shorter
 - Requires ground system
More Vertical Antennas

- Mobile Whip
 - Require ground system
 - Outbacker multi-band
 ‣ Use Outpost tripod for ground mounting

- Balcony Verticals
 - Designed for balcony mount
 - Require ground system
 - ~ 6 ft
 - multi-band 40 – 10 M
 - MFJ 1622

Radials / counterpoises generally required.
The Raised Vertical

- Roof mount a 16 foot 20m vertical or multi-band 20/15/10 trapped vertical with 4 radials
- Instead of exclusive traditional low angle of radiation, it will have continuous coverage ~ 10 to 60 degrees if > 16 feet above ground
- Very useful pattern for DX and “local” skip
- Not very obtrusive

Ground level | 1/4 wave | 1/2 wave | 3/4 wave | Full wave
Stealth Antennas

- Available ARRL
- Flagpole Verticals – ground mounted
- Wires lying on roof tops
 - Black insulation, small diameter
- Wires on Gable ends
 - No good under eaves with metal gutters, soffits
- Wires on Fences - Loops
- Attics for yagi’s
- VHF/UHF on short mast looks like TV antennas
- Vent pipe VHF/UHF verticals, roof mounted
 - http://www.ventenna.com/
Antenna Ideas
Safety

Exposure to RF fields
- RF is non-ionizing radiation
- RF Energy is converted to heat within body
- Body must dissipate heat that it is absorbing.
- Safety Code 6 - Canadian Standard prescribes safe exposure levels

Exposure Factors vary with:
- frequency
- antenna gain
- closeness to antenna
- transmitter power levels
 - duty cycle SSB=20%; CW = 40%; FM, AM, RTTY, Digital = 100%
 - duration > on time / off time. 10 min on & 10 min off = 50%
Safety Code 6 Health Canada

- Dotted line applies to “us”
- Spec is max 30 volts per meter, 10 to 300 MHz
- This is a very high field strength
Exposure Calculation

This program uses the formulas given in FCC OET Bulletin No. 65 to estimate power density in the main lobe of an antenna

http://hintlink.com/power_density.htm

Calculate Radio Frequency Power Density

- The average power at the antenna:
 - In watts
 - The antenna gain in dBi:
 - Enter 2.2 for dipoles; add 2.2 for antennas rated in dBi
 - The distance to the area of interest:
 - From the centre of the antenna, in feet
 - The frequency of operation:
 - In MHz

Ground Reflection Effects

In most cases, the ground reflection factor is needed to provide a truly worst-case estimate of the compliance distance in the main beam of the antenna. Including the ground reflection effects may yield more accurate results especially with very low antennas, non-directional antennas, and calculations below the main lobe of directional antennas.

Do you wish to include effects of ground reflections? ☐ Yes ☐ No

[Calculate RF Power Density] [Reset Values]
Examples

- Some sample calculations to get a “feel” for limits
- Assume 100% duty cycle – i.e. continuous carrier 100 Watts
- Antenna gain 3 dBi (slightly more than a ½ wave dipole)
- Distance from antenna 10 feet, in main lobe

<table>
<thead>
<tr>
<th>FREQUENCY MHz</th>
<th>Safe</th>
<th>Required Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.7</td>
<td>yes</td>
<td>> 1.9 ft</td>
</tr>
<tr>
<td>7.1</td>
<td>yes</td>
<td>> 3.6 ft</td>
</tr>
<tr>
<td>14.2</td>
<td>yes</td>
<td>> 7.1 ft</td>
</tr>
<tr>
<td>21.3</td>
<td>no</td>
<td>> 10.5 ft</td>
</tr>
<tr>
<td>28.3</td>
<td>no</td>
<td>> 14 ft</td>
</tr>
</tbody>
</table>

Body more absorptive at higher frequencies
Best Practices

- Keep antennas at a distance
- Antenna Voltages can be very high with shortened & small antennas
- RF voltages can cause burns if antenna touched
- “Hot” grounds may occur at unknown locations if electrical (green wire) safety ground or plumbing used as counterpoise, or antenna!
Summary

- Visit eHam for product reviews
 http://www.eham.net/
- Get the antenna outside
- Consider balanced (dipoles, yagi’s loops) antenna systems first as “grounding” systems not required
- Verticals and long wires require radials or counterpoise
- Long wires require counterpoise and tuner
- Keep antenna away from metallic objects
- If moving, choose antenna friendly site

Hope this provides some ideas
Appendix I
Industry Canada (I.C.)

- -

- Industry Canada CPC-2-0-03
 - Radiocommunication and Broadcasting Antenna Systems
 - Client Procedures Circular
 - Defines procedures for the installation and modification of all antenna systems including amateur

- Applies to single family, detached dwelling on privately owned land, i.e. typical neighbourhood.

- Likely does not apply to strata communities, rental properties, neighborhoods with covenants or wherever an agreement prohibiting antennas was signed upon purchase.
Appendix II
Some Antenna Theory

- Basic antenna forms – only 2!
 - Hertzian form
 - Marconi form

- Understanding Short antennas
 - Properties
 - Behavior
 - Performance

- What type might be best depends on circumstances
Antenna Circuit

- Generator – the transmitter
- Feedline – two conductors
- Antenna – two wires
- Antenna $ R = $ radiation resistance at resonance

- Complete the circuit - current must flow entirely around the loop
Hertzian Antenna

- No earth connection required for Antenna – good!
- Antenna radiates independent of ground

- Rig grounded by green wire in power cord - SAFETY only
- This ground is not part of the antenna system.
Marconi Antenna

- Antenna operates “against” ground.
- Ground circuit is required – real earth or artificial
- Ground is the other half of the antenna circuit
- Ground consists of a conductive surface to mirror the top half of the antenna

Rig grounded by green wire in power cord - SAFETY
Safety ground could become part of antenna system
Not desirable